MOOCHO Reference Manual
Version of the Day

Generated by Doxygen 1.4.2

Wed Sep 27 02:16:26 2006

CONTENTS 1

Contents

1 MOOCHO: Multi-functional Object-Oriented arCHitecture for Opti-
mization 1

1 MOOCHO: Multi-functional Object-Oriented
arCHitecture for Optimization

WARNING! This documention is currently under active construction!

1.1 Outline

Introduction

Hyper-linked HTML version of this Document

MOOCHO Quickstart

— Configuring, Building, and Installing MOOCHO
— Installed NLP Examples

* Browse all of MOOCHO as a single doxygen collection

1.2 Introduction

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is
designed to solve large-scale, equality and inequality nonlinearly constrained,
non-convex optimization problems (i.e. nonlinear programs) using reduced-space
successive quadratic programming (SQP) methods. The most general form of the
optimization problem that can be solved is:

minimize f(z)
subjectto ¢(z) =0
rr <x<zxy

wherexz € R" the optimization variables/,(x) € ®* — R is the nonlinear scalar
objective function¢(z) = 0 (wherec(z) € R™ — R™) are the nonlinear constraints,
andxy, andxy are the upper and lower bounds on the variables. The current
algorithms in MOOCHO are well suited to solving optimization problems with
massive numbers of unknown variables and equations but few so-called degrees of
optimization freedom (i.e. the degrees of freedom = m = the number of variables
minus the number of equality constraints). Various line-search based globalization

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.2 Introduction 2

methods are available, including exact penalty functions and a form of the filter
method. The algorithms in MOOCHO are provably locally and globally convergent
for a wide class of problems in theory but in practice the behavior and the
performance of the algorithms varies greatly from problem to problem.

MOOCHO was initially developed to solve general sparse optimization problems
where there is no clear distinction between state variables and optimization
parameters. For these types of problems a serial sparse direct solver must be used
(only if you have MA28) to find a square basis for the variable reduction
decompositions current supported.

More recently, MOOCHO has been interfaced throtiiglyra and the
Thyra::ModelEvaluator to address very large-scale, massively parallel,
simulation-constrained optimization problems that take the form:

minimize fly,u)

subjectto c¢(y,u) =0
yr <y <yu
ur < u < uy

wherey € R™v are the state variables,c "+ are the optimization parameters and
c(y,u) = 0 are the discrete nonlinear state simulation equations. Here the state
Jacobiang—; must be square and nonsingular and the partitioning of

z=[y" u”]T into state variableg and optimization variables must be known

a priori and this partitioning can not change during a solve. All of the functionality
needed for MOOCHO to solve a simulation-constrained optimization problem can be
specified through sub-classing theyra::ModelEvaluator interface, and
relatedThyra interfaces. Epetra-based applications can instead implement the
EpetraExt::ModelEvaluator interface and never need to work with Thyra
directly except in trivial and transparent ways.

For simulation-constrained optimization problems, MOOCHO can utilize the full
power of the massively parallel iterative linear solvers and preconditioners available in
Trilinos through Thyra through th&tratimikos package by just flipping a few
switches in a parameter list. These include all of the direct solves in Amesos, the
preconditioners in Ifpack and ML, and the iterative Krylov solvers in AztecOO and
Belos (which is not being released but is available in the development version of
Trilinos). For small to moderate numbers of optimization parameters, the only
bottleneck to parallel scalability is the linear solver used to solve linear systems
involving the state Jacobiagf . The reduced-space SQP algorithms in MOOCHO
itself exhibit extremely good parallel scalability. The parallel scalability of the linear
solvers is controlled by the simulation application and the Trilinos linear solvers and
preconditioners themselves. Typically, the parallel scalability is limited by the
preconditioners as the problem is partitioned to more and more processes.

MOOCHO also includes a minimally invasive mode for reduced-space SQP where the
simulator application only needs to compute the objective and constraint functions

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.3 Hyper-linked HTML version of this Document 3

f(y,u) € R e — Rande(y, u) € R« — R™ and solve only forward linear
systems invoIvin%j . All other derivatives can be approximated with directional

finite differences but any exact derivatives that can be computed by the application are
happily accepted and fully utilized by MOOCHO through the

Thyra::ModelEvaluator interface.

A more detailed mathematical overview of nonlinear programming and the algorithms
that MOOCHO implements are described in the documentOverview of
MOOCHQ"

Note: Specific documentation on the algorithms that MOOCHO implements and the
use of MOOCHO will be added shortly as well as detailed examples.

1.3 Hyper-linked HTML version of this Document

The doxygen-generated hyper-linked version of his document can be found at the
Trilinos website under the link to MOOCHO.

1.4 MOOCHO Quickstart

In order to get started using MOOCHO to solve your NLPs you must first build
MOOCHO as part of Trilinos and install it. When MOOCHO is installed with

Trilinos, several complete examples are also installed that show how to define NLPs,
compile and link against the installed headers and libraries, and how to run the
MOOCHO solvers.

Below, we briefly describ€onfiguring, Building, and Installing MOOCH@nd
accessing thinstalled NLP Examples

1.4.1 Configuring, Building, and Installing MOOCHO

Complete details on the configuration, building, and installing of Trilinos are
described in the Trilinos Installation Guide. However, we give a quick overview of
one such installation that works on Linux systems using g++.

Here we describe the configuration, build, and installation process for a directory
structure that looks like:

$TRILINOS_BASE_DIR
I
|-- Trilinos
I
-- BUILDS

|
-- DEBUG

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.4 MOOCHO Quickstart 4

where$TRILINOS_BASE_DIR is some base directory such as
TRILINOS_BASE_DIR=~/PROJECTS/Trilinos.base . However, in general,
the build directory (show a8TRILINOS_BASE_DIR/BUILDS/DEBUG above) can
be any directory you want but should not be the same as the base directory for
Trilinos. In the most general case, we will assume $RILINOS_BUILD DIR is
the base build directory; in this section, we assume that

TRILINOS BUILD_DIR=$TRILINOS_BASE_DIR/BUILDS/DEBUG .

Here are the steps needed to configure, build, and install MOOCHO along with the
rest of Trilinos:

1. Obtain an expanded source directory tree for Trilinos and create a build
directory

Once you have created the directoddRILINOS_BASE_DIR and
$TRILINOS_BASE_DIR/BUILDS/DEBUG you need to get a copy of the
Trilinos source.

If you have CVS access you can obtain the version of the day through the main
development trunk or can check out a specific tagged release. For example, to
obtain the version of the day you would perform:

cd $TRILINOS_BASE_DIR
cvs -d :ext:userid@software.sandia.gov:/space/CVS co Trilinos

whereuserid is your user ID on the CVS server. For further details on
working with CVS access to Trilinos, see thelinos Developers

Guide .
If you do not have CVS access you can obtain an tar-bar for a release of Trilinos
from theTrilinos Releases Download Page . Once you have the tar

ball, you can expand it into the directo®f RILINOS BASE_DIR as follows:

cd $TRILINOS_BASE_DIR
tar -xzvf ~/Trilnos.xxx

2. Create a configuration script

By far the hardest part of building and installing Trilinos is figuring out how to
write the configuration script. The best place to find example configure scripts
that at least have a chance of being correct on specific systems is to look at
Trilinos test harness scripts in the directory:

Trilinos/commonTools/test/harness/invoke-configure

Older scripts that have worked on a wider variety of systems in the past can be
found in the directory:

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.4 MOOCHO Quickstart 5

Trilinos/sampleScripts

Warning! The above scripts are likely to be currently broken for even the same
systems for which they where developed. These scripts really only provide
ideas for different combinations to try to get a configure script to work on your
system.

Below is an example configure script calléd-configure that might be
used to configure Trilinos with MOOCHO support (but might not actually work
on any actual computer on Earth):

$TRILINOS_BASE_DIR/Trilinos/configure \

--prefix=$TRILINOS_INSTALL_DIR \

--with-install="/usr/bin/install -p" \

--with-gnumake \

--enable-export-makefiles \

--with-cflags="-g -O0 -ansi -Wall" \

--with-cxxflags="-g -O0 -ansi -Wall -ftrapv -pedantic -Wconversion" \

--enable-mpi --with-mpi-compilers \

--with-incdirs="-I${HOME}/include" \

--with-Idflags="-L${HOME}/lib/LINUX_MPI" \

--with-libs="-ldscpack -lumfpack -lamd -lparmetis-3.1 -Imetis-4.0 -Iskit" \

--with-blas=-Iblas \

--with-lapack=-lapack \

--with-flibs="-Ig2c" \

--disable-default-packages \

--enable-teuchos --enable-teuchos-extended --disable-teuchos-complex \
--enable-teuchos-abc --enable-teuchos-debug \

--enable-thyra \

--enable-epetra \

--enable-triutils \

--enable-epetraext \

--enable-amesos --enable-amesos-umfpack --enable-amesos-dscpack \

--enable-aztecoo \

--enable-ifpack --enable-ifpack-metis --enable-ifpack-sparskit \

--enable-ml --with-ml_metis --with-ml_parmetis3x \

--enable-stratimikos \

--enable-moocho

The above script is almost completely platform dependent in most cases, except
for everything belowdisable-default-packages for enable options

for individual packages. A few points about the above configure script are
worth mentioning. First, some of the package enable options such as
-enable-epetra should be unnecessary once other options such as
-enable-epetraext are included but to be safe it is a good idea to be
explicit about what packages to build in case the built in top-level configure
logic is wrong. Second, it is a good idea to include the options
-enable-teuchos-debug and-enable-teuchos-abc when you first
start working with Trilinos to help catch coding errors on your part (and perhaps
on the part of Trilinos developers). Third, the above script show enabled

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.4

MOOCHO Quickstart 6

support for several third-party libraries such as UMFPACK, DSCPACK,
SparseKit, and Metis. You are responsible for installing these third party
libraries yourself if you want the extra capabilities that they enable. Otherwise,
to get started, a simpler script such as the follow can be used to begin with:

$TRILINOS_BASE_DIR/Trilinos/configure \

--prefix=$TRILINOS_INSTALL_DIR \

--with-install="/usr/bin/install -p" \

--with-gnumake \

--enable-export-makefiles \

--with-cflags="-g -O0 -ansi -Wall* \

--with-cxxflags="-g -O0 -ansi -Wall -ftrapv -pedantic -Wconversion" \

--enable-mpi --with-mpi-compilers \

--with-blas=-Iblas \

--with-lapack=-lapack \

--with-flibs="-Ig2c" \

--disable-default-packages \

--enable-teuchos --enable-teuchos-extended --disable-teuchos-complex \
--enable-teuchos-abc --enable-teuchos-debug \

--enable-thyra \

--enable-epetra \

--enable-triutils \

--enable-epetraext \

--enable-amesos \

--enable-aztecoo \

--enable-ifpack \

--enable-ml \

--enable-stratimikos \

--enable-moocho

As a final step, you can make tbe-configure script executable and this is
assumed below.

. Configure, build, and install Trilinos

Once you have a configure script, you can configure and build Trilinos as
follows:

cd $TRILINOS_BUILD_DIR
.Jdo-configure

make

make install

If a problem does occur, it usually occurs during configuration. Often trial and
error is required to get the configuration to complete successfully.

Once the Trilinos build completes (which can take hours on a slower machine if
a lot of packages are enabled) you should test Trilinos using something like:

make runtest-mpi TRILINOS_MPI_GO="mpirun -np "

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.4 MOOCHO Quickstart 7

1.4.2

If you not enable MPI, you run run the serial test suite as:

make runtest-serial
Some of the tests in the test suite may fail if you have not enabled everything
and this is okay. Once you feel good about the build, you can install Trilinos as
follows:

make install
If everything goes smoothly, then Trilinos will be installed with the following

directory structure:

$TRILINOS_INSTALL_DIR

-- examples

|

[

[

|-- include
[

|-- libs

[

-- tools

Once the install competes, you can move on to building and running the
external MOOCHO examples as describe in the next section.

Installed NLP Examples

When the configure optiorenable-export-makefiles is included, a set of
examples are installed in the directory specified by
-prefix=$TRILINOS_INSTALL_DIR and the directory structure will look
something like:

$TRILINOS_INSTALL_DIR

-- examples

- NLPWBCounterExample
- ExampleNLPBanded

-- thyra

|
|-- NLPThyraEpetraModelEval4DOpt

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.4 MOOCHO Quickstart 8

| -- NLPThyraEpetraAdvDiffReactOpt
-- tools

-- moocho

Note that the directory

$TRILINOS_INSTALL_DIR/examples/moocho/thyra will not be installed
if -enable-export-makefiles is not included (or is disabled) or if
-enable-thyra is missing or-disable-moocho-thyra is specified at

configure time.

Each installed example contains a simple makefile that is ready to build each of the
examples and to demonstrate several important features of MOOCHO. Each makefile
shows how to compile and link against the installed header files and libraries. These
makefiles use the Trilinos export makefile system to make it easy to get all of the
compiler and linker options and get the right libraries in the build process. The user is
encouraged to copy these examples to their own directory and modify them to solve
their NLPs.

Specific examples can be examined through the links below but we first go through
the common features of these examples here for one of the
Thyra::ModelEvaluator examples

One common feature of all of these examples is the makefile that is generated. For the
NLPWBCounterExample example (that is described ???here???) the makefile
looks like:

By using the macros starting witMOOCHOQone is guaranteed that the same compiler
with the same options are used to build the client’s code that were used to build
Trilinos. Of particular importance aldOOCHO_CXMOOCHO_DEFS
MOOCHO_CPPFLAG®JIMOOCHO_CXXldince these ensure that the same C++
compiler and the sam® macro definitions are used. These are critical to compiling
compatible code in many cases. The madi@3OCHO _LIB$ontain all of the

libraries needed to link executables and they include all of the libraries in their lower
level dependent Trilinos packages. For example, you don't explicitly see the libraries
for say Teuchos, but you can be user that they are there.

This makefile gets created with the following lines commented in or out depending on
if -enable-gnumake was specified or not:

In the above example, support for GNU Make is enabled which results in scripts being
called to clean up the list of include paths and libraries and have duplicate entries
removed.

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

1.5 Browse all of MOOCHO as a single doxygen collection

1.5 Browse all of MOOCHO as a single doxygen collection

You can browse all of MOOCHO assangle doxygen collection

Warning, this is not the recommended way to learn about MOOCHO software.
However, this is a good way to browse tthieectory structure of

MOOCH@o <ahref="../../browser/doc/html/files.htm#locate files, etc.

Generated on Wed Sep 27 02:16:26 2006 for MOOCHO by Doxygen

file:../../browser/doc/html/index.html
file:../../browser/doc/html/dirs.html
file:../../browser/doc/html/dirs.html

	MOOCHO: Multi-functional Object-Oriented arCHitecture for Optimization

